17 research outputs found

    Geometric Semantic Grammatical Evolution

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.Geometric Semantic Genetic Programming (GSGP) is a novel form of Genetic Programming (GP), based on a geometric theory of evolutionary algorithms, which directly searches the semantic space of programs. In this chapter, we extend this framework to Grammatical Evolution (GE) and refer to the new method as Geometric Semantic Grammatical Evolution (GSGE). We formally derive new mutation and crossover operators for GE which are guaranteed to see a simple unimodal fitness landscape. This surprising result shows that the GE genotypephenotype mapping does not necessarily imply low genotype-fitness locality. To complement the theory, we present extensive experimental results on three standard domains (Boolean, Arithmetic and Classifier)

    Pruning of genetic programming trees using permutation tests

    Get PDF
    We present a novel approach based on statistical permutation tests for pruning redundant subtrees from genetic programming (GP) trees that allows us to explore the extent of effective redundancy . We observe that over a range of regression problems, median tree sizes are reduced by around 20% largely independent of test function, and that while some large subtrees are removed, the median pruned subtree comprises just three nodes; most take the form of an exact algebraic simplification. Our statistically-based pruning technique has allowed us to explore the hypothesis that a given subtree can be replaced with a constant if this substitution results in no statistical change to the behavior of the parent tree – what we term approximate simplification. In the eventuality, we infer that more than 95% of the accepted pruning proposals are the result of algebraic simplifications, which provides some practical insight into the scope of removing redundancies in GP trees

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Geometric Semantic Genetic Programming for Real Life Applications

    No full text
    In a recent contribution we have introduced a new implementation of geometric semantic operators for Genetic Programming. Thanks to this implementation, we are now able to deeply investigate their usefulness and study their properties on complex real-life applications. Our experiments confirm that these operators are more effective than traditional ones in optimizing training data, due to the fact that they induce a unimodal fitness landscape. Furthermore, they automatically limit overfitting, something we had already noticed in our recent contribution, and that is further discussed here. Finally, we investigate the influence of some parameters on the effectiveness of these operators, and we show that tuning their values and setting them \u201ca priori\u201d may be wasted effort. Instead, if we randomly modify the values of those parameters several times during the evolution, we obtain a performance that is comparable with the one obtained with the best setting, both on training and test data for all the studied problems

    GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution

    Get PDF
    4noGene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a recent Evolutionary Algorithm (EA) in which the interactions among parts of the solution (i.e., the linkage) are learned and exploited in a novel variation operator. We present GOMGE, the extension of GOMEA to Grammatical Evolution (GE), a popular EA based on an indirect representation which may be applied to any problem whose solutions can be described using a context-free grammar (CFG). GE is a general approach that does not require the user to tune the internals of the EA to fit the problem at hand: there is hence the opportunity for benefiting from the potential of GOMEA to automatically learn and exploit the linkage. We apply the proposed approach to three variants of GE differing in the representation (original GE, SGE, and WHGE) and incorporate in GOMGE two specific improvements aimed at coping with the high degeneracy of those representations. We experimentally assess GOMGE and show that, when coupled with WHGE and SGE, it is clearly beneficial to both effectiveness and efficiency, whereas it delivers mixed results with the original GE.partially_openembargoed_20190822Medvet, Eric; Bartoli, Alberto; De Lorenzo, Andrea; Tarlao, FabianoMedvet, Eric; Bartoli, Alberto; De Lorenzo, Andrea; Tarlao, Fabian

    Stochastic Semantic-Based Multi-objective Genetic Programming Optimisation for Classification of Imbalanced Data

    Get PDF
    Data sets with imbalanced class distribution pose serious challenges to well-established classifiers. In this work, we propose a stochastic multi-objective genetic programming based on semantics. We tested this approach on imbalanced binary classification data sets, where the proposed approach is able to achieve, in some cases, higher recall, precision and F-measure values on the minority class compared to C4.5, Naive Bayes and Support Vector Machine, without significantly decreasing these values on the majority class
    corecore